Finite element analysis of the valgus knee joint of an obese child

نویسندگان

  • Jun Sun
  • Songhua Yan
  • Yan Jiang
  • Duo Wai-chi Wong
  • Ming Zhang
  • Jizhou Zeng
  • Kuan Zhang
چکیده

BACKGROUND Knee valgus and varus morbidity is at the second top place in children lower limb deformity diseases. It may cause abnormal stress distribution. The magnitude and location of contact forces on tibia plateau during gait cycle have been indicated as markers for risk of osteoarthritis. So far, few studies reported the contact stress and force distribution on tibial plateau of valgus knee of children. METHODS To estimate the contact stresses and forces on tibial plateau of an 8-year old obese boy with valgus knee and a 7-year old healthy boy, three-dimensional (3D) finite element (FE) models of their left knee joints were developed. The valgus knee model has 36,897 nodes and 1,65,106 elements, and the normal knee model has 78,278 nodes and 1,18,756 elements. Paired t test was used for the comparison between the results from the 3D FE analysis method and the results from traditional kinematic measurement methods. RESULTS The p value of paired t test is 0.12. Maximum stresses shifted to lateral plateau in knee valgus children while maximum stresses were on medial plateau in normal knee child at the first peak of vertical GRF of stance phase. The locations of contact centers on medial plateau changed 3.38 mm more than that on lateral plateau, while the locations of contact centers on medial plateau changed 1.22 mm less than that on lateral plateau for healthy child from the first peak to second peak of vertical GRF of stance phase. CONCLUSIONS The paired t test result shows that there is no significant difference between the two methods. The results of FE analysis method suggest that knee valgus malalignment could be the reason for abnormal knee load that may cause knee problems in obese children with valgus knee in the long-term. This study may help to understand biomechanical mechanism of valgus knees of obese children.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crash Injury Analysis of Knee Joint Considering Pedestrian Safety

Background: Lower extremity injuries are frequently observed in car-to-pedestrian accidents and due to the bumper height of most cars, knee joint is one of the most damaged body parts in car-to-pedestrian collisions.Objective: The aim of this paper is first to provide an accurate Finite Element model of the knee joint and second to investigate lower limb impact biomechanics in car-to-pede...

متن کامل

Computational study on the effect of malalignment of the tibial component on the biomechanics of total knee arthroplasty

OBJECTIVES Malalignment of the tibial component could influence the long-term survival of a total knee arthroplasty (TKA). The object of this study was to investigate the biomechanical effect of varus and valgus malalignment on the tibial component under stance-phase gait cycle loading conditions. METHODS Validated finite element models for varus and valgus malalignment by 3° and 5° were deve...

متن کامل

Supracondylar Osteotomy in Valgus Knee: Angle Blade Plate Versus Locking Compression Plate

  Background: There are few studies comparing the biomechanical properties of angled blade plate and locking compression plates in supracondylar osteotomy. In the current randomized study, we prospectively compared the clinical and radiological outcomes of supracondylar osteotomy using these two plates. Methods: Forty patients with valgus knee malalignment were randomly assigned to two equal nu...

متن کامل

Distal Femoral Valgus Cut Errors in Total Knee Replacement

The causes of malalignment in total knee arthroplasty can be categorized into three different groups; 1) Errors in bone cuts 2) Errors in implant fixations, and 3) The method of setting down the cutting guides (1). We would like to announce that more several distal femoral valgus cut errors may occur during total knee replacement.

متن کامل

Stress distribution on a valgus knee prosthetic inclined interline -- a finite element analysis.

Total knee arthroplasty following valgus deformity is a challenging procedure due to the unique set of problems that must be addressed. The aim of this study is to determine, with a finite element analysis, the load distribution for an inclined valgus prosthetic balanced knee and to compare these results with those of a prosthetic balanced knee with an uninclined interline. Computational simula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2016